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Abstract—Cognitive Radio (CR) challenges the traditional
task of spectrum sensing with requirements of reliability, effi-
ciency and real-time. Sub-Nyquist sampling has been considered
for this task in order to cope with the sampling rate bottleneck of
the wideband signals a CR usually deals with, by exploiting their
multiband structure. However, communication signals suffer from
fading and shadowing effects that affect a single CR’s perfor-
mance. In this paper, we consider collaborative spectrum sensing
by a network of CRs, each sharing an observation matrix derived
from sub-Nyquist samples of their respective received signal with
a fusion center. Exploiting the fact that all received signals share
a joint support, equal to that of the transmitted signal, the fusion
center recovers it by combining the measurements of the different
CRs. We present two joint reconstruction algorithms, Block
Sparse Simultaneous Orthogonal Matching Pursuit (BSOMP) and
Block Sparse Simultaneous Iterative Hard Thresholding (BSIHT),
that adapt the original OMP and IHT to both block sparse
and matrix (simultaneous) inputs. Simulations show that our
algorithms outperform a collaborative scheme based on hard
decisions, namely the union of the supports recovered by each
CR individually, demonstrating that cooperation between CRs
via measurement fusion improve their performance.

I. INTRODUCTION

Cognitive Radio (CR), introduced by Mitola [1], has been
recently considered as a promising solution to the ever-
increasing spectrum crowdedness [2], [3]. Secondary users
would opportunistically access frequency bands left vacant by
their primary owners, called white space or spectrum holes,
increasing spectral efficiency. Spectrum sensing is an essential
task in the CR’s cycle [3]. Indeed, a CR should be able to
constantly monitor the spectrum and detect the primary users’
(PUs) activity, reliably and fast [4], [5]. Besides, in order
to increase the chance to find an unoccupied spectral band,
the CR has to sense a wide band of spectrum. Nyquist rates
of wideband signals are high and can even exceed today’s
best analog-to-digital converters (ADCs) front-end bandwidths.
Moreover, such high sampling rates generate a large number
of samples to process, affecting speed and power consumption.

To overcome the rate bottleneck, several new sampling
methods have recently been proposed [6], [7] that reduce the
sampling rate in multiband settings below the Nyquist rate.
The authors consider perfect signal reconstruction in noise-
free settings and provide sampling and recovery techniques. In
the CR setting, however, only the signal support is of interest
and reconstructing the original signal is unnecessary. Several
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papers have considered power spectrum, rather than spectrum
reconstruction, from sub-Nyquist samples [8], [9], [10].

The task of spectrum sensing for CRs is further compli-
cated due to path loss, fading and shadowing [11], [12]. To
overcome these practical issues, collaborative CR networks
have been considered, where different users share their sensing
results and cooperatively decide on the licensed spectrum
occupancy. Cooperative spectrum sensing can be classified
into three catagories based on the way the data is shared
by the CRs in the network: centralized, distributed and relay-
assisted. Moreover, two options of data fusion arise: decision
fusion, or hard decision, where the CRs only report their binary
local decisions, and measurement fusion, or soft decision,
where they share all or part of their samples [11]. In [13],
the authors compare soft and hard decisions using sequential
detection. They consider the Nyquist samples of one spectral
band. Cooperation has been shown to improve the detection
performance and relax sensitivity requirements by exploiting
spatial diversity [12], [14]. The authors [12], [14] quantify the
effect of collaboration on the probabilities of detection and
false alarm in the Nyquist regime and in centralized settings.
In [12], an OR-rule based on the binary decisions of the sensors
is used as a fusion rule, whereas a joint optimization problem
is solved in [14] to find the optimal decision threshold.

In this paper, we focus on centralized cooperation based
on measurement fusion, which requires a fusion center. Sev-
eral works have considered centralized collaborative wideband
spectrum sensing for cognitive radios. In [15], each CR,
equipped with a frequency selective filter, senses a linear
combination of multiple predefined narrow frequency bands.
Each band is represented by a binary state, 1 or 0, indicating if
it is occupied or not, rather than an actual signal. The support
of the wideband signal in then recovered at the fusion center
from the samples sent by the CRs, using matrix completion
and joint sparsity recovery techniques. However, this technique
requires additive analog filters at each CR. Moreover, since
the CRs do not sense the whole spectrum, a large part of
spatial diversity is not exploited. Furthermore, no actual signals
are considered and no sampling and acquisition method is
described. A centralized approach, where all samples from
the CRs are sent to a fusion center, is proposed in [16].
Here, each CR samples the wideband signal, assumed to be
sparse, at a sub-Nyquist rate. However, in order to derive
their reconstruction scheme, the authors exploit a relation
between sub-Nyquist and Nyquist samples, whereas no spe-
cific sampling scheme is given. Moreover, the channel state
information (CSI) is assumed to be known. Both non fading
and fading environments are considered but no analysis on the
reconstruction is provided for the latter. In [17], no concrete
sampling scheme is given as well, and the sampling matrix
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is assumed to be random Gaussian. The signal of interest,
represented by a finite discrete sequence and assumed to
be sparse, is jointly recovered at a fusion center from the
measurements of the different CRs. A distributed approach is
considered in [18] that is first exposed in a centralized manner.
The goal of that work is to estimate the power distribution in
space and frequency. The authors use a discretized grid both
in space and frequency and do not recover the emitted signal
continuous support.

In this work, we propose a centralized collaborative spec-
trum sensing method from samples acquired at a sub-Nyquist
rate at each CR. We use either multicoset sampling [6] or the
Modulated Wideband Converter (MWC) [7] for the sampling
stage. The CRs sample the wideband sparse signal suffering
from different effects of fading and shadowing, and share
an observation matrix derived from their low-rate samples,
rather than the samples themselves to reduce communication
overhead, with a fusion center which recover the underlying
joint support. The overhead in delay and energy caused by
cooperative sensing, is mitigated by processing sub-Nyquist
samples. We derive two reconstruction algorithms, Block
Sparse Simultaneous Orthogonal Matching Pursuit (BSOMP)
and Block Sparse Simultaneous Iterative Hard Thresholding
(BSIHT), that adapt the Distributed Compressed Sensing Si-
multaneous OMP (DCS-SOMP) [19] and Simultaneous IHT
(S-IHT) algorithms [17] to our settings. We do not assume any
a priori knowledge on the CSI. We observe that both BSOMP
and BSIHT outperform support recovery based on the union
between the supports recovered by each CR independently.

This paper is organized as follows. In Section II, we present
the transmitted and received signal models. Sections III and IV
describe the individual sub-Nyquist sampling stage and joint
support recovery stage, respectively. Numerical experiments
are presented in Section V.

II. SIGNAL MODEL AND PROBLEM FORMULATION

A. Transmitted Signal Multiband Model

Let x(t) be a real-valued continuous-time signal, supported
on F = [−1/2TNyq,+1/2TNyq] and composed of up to Nsig
transmissions, such that

x(t) =

Nsig∑
i=1

si(t), (1)

where si(t) is a bandpass process. The single-sided bandwidth
of each transmission is assumed to not exceed B. Formally,
the Fourier transform of x(t) defined by

X(f) =

∫ ∞
−∞

x(t)e−j2πftdt (2)

is zero for every f /∈ F . We denote by fNyq = 1/TNyq
the Nyquist rate of x(t). Only NSig and B, or at least an
upper bound for each, are assumed to be known. Denote by
S the frequency support of x(t) and κ = 2NSig its sparsity
(the factor 2 stems from the fact that each signal contributes
two symmetric frequency bands). The carrier frequencies and
modulations of si(t) are unknown. The signal is received by
Nrec receivers.

B. Faded Received Signal

We consider two effects of the transmission channels:
Rayleigh fading, or small-scale fading, and log-normal shad-
owing, or large-scale fading [20], [12], [21]. Denote by rij(t)
the received signal corresponding to the ith transmission,
1 ≤ i ≤ Nsig, received at the jth CR, 1 ≤ j ≤ Nrec.
The received signal is generally described in terms of the
transmitted signal si(t) convolved with the impulse response
of the channel hij(t), namely

rij(t) = si(t) ∗ hij(t), (3)

where ∗ denotes convolution.

1) Rayleigh fading: For most practical channels, the free-
space propagation model, which only accounts for path loss,
is inadequate to describe the channel. A signal can travel
from transmitter to receiver over multiple reflective paths,
which is traditionally modeled as Rayleigh fading, namely the
envelope of the channel responses hij(t) follows the Rayleigh
distribution, given by

ph(r) =

{
r
σ2 e
−r2/2σ2

r ≥ 0
0 otherwise,

(4)

where r is the envelope amplitude of the received signal, and
2σ2 its mean power [21].

2) Log-normal shadowing: Large-scale fading represents
the average signal power attenuation or path loss due to motion
over large areas. This phenomenon is affected by promi-
nent terrain contours between the transmitter and receiver.
Empirical measurements suggest that this type of fading, or
shadowing, follows a normal distribution in dB units [22], or
alternatively, the linear channel gain may be modeled as a log-
normal random variable [12]. Therefore, the path loss (PL)
measured in dB is expressed as

PL = PL0 + 10γ log
d

d0
+Xσ. (5)

Here, the reference distance d0 corresponds to a point located
in the far field of the antenna (typically 1 km for large cells).
The path loss to the reference point PL0 is usually found
through field measurements or calculated using free-space
path loss. The value of the path loss exponent γ depends on
the frequency, antenna heights, and propagation environment.
Finally, Xσ denotes a Gaussian random variable (in dB) with
variance σ2 determined heuristically as well [21].

The shadowed received signal is thus given by

rij(t) = 10−PLij/20 · si(t), (6)

where PLij denotes the path loss between the ith transmitter
and the jth receiver. Here, hij(t) = 10−PLij/20 is a constant.

C. Problem Formulation

A network of Nrec CRs receives the Nsig transmissions,
such that the received signal at the jth CR is given by

x(j)(t) =

Nsig∑
i=1

rij(t). (7)
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Our goal is to assess the support of the transmitted signal x(t)
from sub-Nyquist samples of the received x(j)(t), 1 ≤ j ≤
Nrec.

The transmissions are affected differently by fading and
shadowing effects from each transmitter to each CR. In order
to determine the support of x(t), we exploit the joint sparsity
in the frequency domain shared by x(j)(t), 1 ≤ j ≤ Nrec.
Specifically, we jointly recover the common support of x(j)(t)
from their sub-Nyquist samples, which is the support of the
original signal x(t) as well, namely S.

III. INDIVIDUAL SUB-NYQUIST SAMPLING

In this section, we briefly describe the sub-Nyquist sam-
pling schemes performed at each CR on the corresponding
received signal x(j)(t). We consider two different approaches:
multicoset sampling [7] and the MWC [6] which were previ-
ously proposed for sparse multiband signals. We show that
both schemes lead to identical expressions of the signal
spectrum in terms of the samples. Therefore, the support
reconstruction stage presented in Section IV can be applied
to either of the samples. For convenience, we drop the index
j in this section.

A. Multicoset sampling

Multicoset sampling [23] can be described as the selection
of certain samples from the uniform grid. More precisely, the
uniform grid is divided into blocks of N consecutive samples,
from which only M are kept. The ith sampling sequence is
defined as

xci [n] =

{
x(nTNyq), n = mN + ci,m ∈ Z
0, otherwise, (8)

where 0 < c1 < c2 < · · · < cM < N−1. Let fs = 1
NTNyq

≥ B
be the sampling rate of each channel and Fs = [−fs/2, fs/2].
Following the derivations from multicoset sampling [7], we
obtain

z(f) = Ax(f), f ∈ Fs, (9)

where zi(f) = Xci(e
j2πfTNyq), 0 ≤ i ≤M−1 are the discrete-

time Fourier transforms (DTFTs) of the multicoset samples
and

xk(f) = X (f +Kkfs) , 1 ≤ k ≤ N, (10)

where Kk = k − N+1
2 , 1 ≤ k ≤ N for odd N and Kk =

k − N+2
2 , 1 ≤ k ≤ N for even N . Each entry of x(f) is

referred to as a bin since it consists of a slice of the spectrum
of x(t). The ikth element of the M ×N matrix A is given by

Aik =
1

NTNyq
ej

2π
N ciKk . (11)

B. MWC sampling

The MWC [6] is composed of M parallel channels. In each
channel, an analog mixing front-end, where x(t) is multiplied
by a mixing function pi(t), aliases the spectrum, such that
each band appears in baseband. The mixing functions pi(t)
are required to be periodic with period Tp such that fp =
1/Tp ≥ B. The function pi(t) has a Fourier expansion

pi(t) =

∞∑
l=−∞

cile
j 2π
Tp
lt
. (12)

In each channel, the signal goes through a lowpass filter with
cut-off frequency fs/2 and is sampled at the rate fs ≥ fp.
For the sake of simplicity, we choose fs = fp. Repeating the
calculations in [6], we derive the relation between the known
DTFTs of the samples yi[n] and the unknown X(f)

z(f) = Ax(f), f ∈ Fs, (13)

where z(f) is a vector of length N with ith element zi(f) =
Yi(e

j2πfTs). The unknown vector x(f) is given by (10). The
M ×N matrix A contains the coefficients cil:

Ail = ci,−l = c∗il. (14)

For both sampling schemes, the overall sampling rate is

ftot =Mfs =
M

N
fNyq. (15)

C. Continuous to Finite (CTF)

The sets of equations (9) and (13) consist of an infinite
number of linear systems since f is a continuous variable. Such
systems are known as infinite measurement vectors (IMV) in
the compressed sensing (CS) literature. We use the support
recovery paradigm from [7] that produces a finite system
of equations, called multiple measurement vectors (MMV)
from an infinite number of linear systems. This reduction is
performed by what is referred to as the continuous to finite
(CTF) block.

From (9) or (13), we have

Q = AZAH (16)

where

Q =

∫
f∈Fs

z(f)zH(f)df (17)

is a M ×M matrix and

Z =

∫
f∈Fs

x(f)xH(f)df (18)

is a N × N matrix. We then construct a frame V such that
Q = VVH . Clearly, there are many possible ways to select
V. We construct it by performing an eigendecomposition of
Q and choosing V as the matrix of eigenvectors corresponding
to the non zero eigenvalues. We can then define the following
linear system

V = AU. (19)

From [7] (Propositions 2-3), the support of the unique sparsest
solution of (19) is the same as the support of the original set
of equations (9) or (13).

IV. JOINT SUPPORT RECONSTRUCTION

In this section, we consider joint support recovery from the
observation matrices V(j), 1 ≤ j ≤ Nrec shared by the CRs
with the fusion center and develop two joint support recovery
algorithms: BSOMP and BSIHT.
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A. Simultaneous Block Sparsity

The jth CR shares its observation matrix V(j) and its
measurement matrix A(j) with the fusion center. The sampling
matrices are considered to be different from one another in
order to allow for more measurement diversity. However, the
same known matrix can be used to reduce the communication
overhead. The underlying matrices U(j) are jointly sparse
since fading (3, 4) and shadowing (6) do not affect the original
signal support.

In the next section, we show how the joint support of
U(j), 1 ≤ j ≤ Nrec, namely S, can be recovered from the
measurements V(j), 1 ≤ j ≤ Nrec. We note that the matrices
V(j) are of size M × P , where P = rank(Q) ≤M .

We begin by expressing the set of equations (19), for
1 ≤ j ≤ Nrec, in block sparse structure. Note that manipulating
large block matrices, considered here for simplicity, is not
nedeed and the computation is done on the different blocks
separately, as is shown below. Denote the block observation
matrix, which stacks the observation matrices vertically,

V =


V(1)

V(2)

...
V(Nrec)

 , (20)

the block measurement matrix

A =

 A
(1)
1 . . . 0 . . . A

(1)
N . . . 0

...
. . .

... . . .
...

. . .
...

0 . . . A
(Nrec)
1 . . . 0 . . . A

(Nrec)
N

 ,
(21)

and the block sparse matrix of interest, which stacks the rows
of the matrices U(j) by aggregating the rows with identical
indices,

U =



U
(1)
1

T

...

U
(Nrec)
1

T

...

U
(1)
N

T

...

U
(Nrec)
N

T


. (22)

Here A
(j)
i denotes the ith column of the matrix A(j), corre-

sponding to the jth receiver, and U
(j)
i

T
denotes the ith row

of the matrix U(j). The kth block of U is denoted by

U[k] =


U

(1)
k

T

...

U
(Nrec)
k

T

 , (23)

and the corresponding kth block of A is

A[k] =


A

(1)
k 0 . . . 0

0 A
(2)
k . . . 0

...
...

. . .
...

0 . . . 0 A
(Nrec)
k

 . (24)

Obviously, V(j) = A(j)U(j),∀1 ≤ j ≤ Nrec, if and only if
V = AU.

In order to find the joint support S, we exploit both the
joint or simultaneous sparsity between the columns of U and
the block sparsity of U. In the worst case, we require M ≥ 2κ,
leading to a minimal sampling rate of 2κB for each CR [7].

B. BSOMP

To adapt the original OMP algorithm to our setting, we
need to extend it to both the simultaneous and block sparse set-
tings. We use the DCS-SOMP algorithm of [19], which extends
the original SOMP [24] to allow for a different sampling matrix
A(j) for each receiver, increasing measurement diversity. In
each iteration, the block index n ∈ {1, 2, . . . , N} that accounts
for the greatest amount of residual energy, namely the index
of the measurement matrix column that holds the highest
correlation with the residual matrix, across all receivers, is
retained. To extend DCS-SOMP to the block sparse case, this
index is selected as the one which maximizes the Frobenius
norm of the block matrices B[n] (line 4 in Algorithm 1)
corresponding to the residual projections over all the receivers
(lines 6-7 in Algorithm 1). Thus, at each iteration, the block
that is best matched to the residual R is chosen, as in [25].

The resulting BSOMP iterations are described in Algorithm
1. Here, BT

j [n] denotes the jth row of B[n], Û|S and Û|SC
are the estimated matrix U reduced to its support set and
the complement set of the latter, respectively. The notations
†, H , and || · ||F represent the Moore-Penrose pseudo-inverse,
Hermitian operation and Frobenius norm, respectively.

As for the original OMP, several halting criteria can be con-
sidered. When the original joint sparsity is known, a sparsity-
based criterion can be used, namely |S| ≤ κ. Otherwise, a
residual-based criterion, such as ||R||2 < ε, where ε is a
selected threshold, is needed.

Algorithm 1 BSOMP

Input: observation matrices V(j), measurement matrix A(j)

Output: index set S containing the joint support of U(j)

1: Initialization: residual R = V, index set S = ∅, i = 0
2: while halting criterion false do
3: i← i+ 1
4: BT

j [n] = (A
(j)
n )HR(j), j ∈ {1, . . . , Nrec}

5: for n = 1 to N do
6: b(n) = ||B[n]||2F

end for
7: S ← S

⋃
argmaxn b(n)

8: Û
(j)
|S ←

(
A(j)

)†
|SV

(j), Û
(j)

|SC ← 0, j ∈ {1, . . . , Nrec}
9: R← V −

∑
k∈SA[k]Û[k]

end while
10: return S
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C. BSIHT

Next, we turn to the BSIHT algorithm, which extends SIHT
[17] to the block sparse case. SIHT solves problems of the
type of (19) (for one receiver) by computing the estimate of
columns of the sparse matrix, following the original IHT. The
indices of the common support are then selected by averaging
over these estimates [17]. In the collaborative problem, the
average over the estimates is carried out over the columns of
the sparse matrix as well as accross the different receivers
(lines 6-7 in Algorithm 2). Once the support is selected, the
updated calculations are performed separately for each column
of the sparse matrix and for each receiver. An adaptive step
size is used to improve the performance with regard to a fixed
scaling factor [17].

The resulting BSIHT is shown in Algorithm 2. Here, U(j)i
k

denotes the kth column of the matrix U(j) estimated at the ith
iteration, Z(j)

k and Z
T (j)
n denote the kth column and nth row

of the matrix Z(j), respectively, HSi is a nonlinear operator
that sets all but the indices of Si to zero and T (b, κ) selects
the indices of the κ largest elements of b.

Again, several halting criteria can be considered. A norm
convergence criterion, which sums over all columns and all
receivers, can be chosen. A maximum number of iterations
can also be selected.

Algorithm 2 BSIHT

Input: observation matrices V(j), measurement matrix A(j)

Output: index set S containing the joint support of U(j)

1: Initialization: U
(j)0
k = 0, step size µ

(j)0
k = 1

M , k ∈
{1, . . . , P}, j ∈ {1, . . . , Nrec}, i = 0

2: while halting criterion false do
3: Z

(j)i+1
k = U

(j)i
k + µ

(j)i
k (A(j))H

(
V

(j)
k −A(j)U

(j)i
k

)
,

k ∈ {1, . . . , P}, j ∈ {1, . . . , Nrec}
4: for n = 1 to N do
5: Denote BT

j [n] = Z
T (j)i+1
n , k ∈ {1, . . . , P}, j ∈

{1, . . . , Nrec}
6: b(n) = ||B[n]||2F

end for
7: Si ← supp(T (b, κ))
8: U

(j)i+1
k = HSi(U

(j)i
k + µ

(j)i
k (A(j))H(V

(j)
k −

A(j)U
(j)i
k )), k ∈ {1, . . . , P}, j ∈ {1, . . . , Nrec}

9: g
(j)i+1
k = (A(j))H

(
V

(j)
k −A(j)U

(j)i+1
k

)
, k ∈

{1, . . . , P}, j ∈ {1, . . . , Nrec}

10: µ
(j)i+1
k =

||g(j)i+1

k|Si
||2

||A(j)

|Si
g
(j)i+1

k|Si
||2

, k ∈ {1, . . . , P}, j ∈

{1, . . . , Nrec}
11: i← i+ 1

end while
12: return Si

V. SIMULATION RESULTS

In this section, we compare the performance of our two
algorithms, BSOMP and BSIHT, along with a simple union
between the supports recovered by each receiver separately
using SOMP. The union is performed by selecting the most
common indices with respect to the receivers. In case of a tie,
the indices are chosen uniformly at random so that the resulting

support contains κ entries. A success is declared whenever the
recovered and original supports are exactly identical.

In the simulations, we consider a signal with Nyquist rate
fNyq = 6.1GHz composed of Nsig = 3 QPSK modulated trans-
missions with arbitrary carriers and single-sided bandwidth
B = 20MHz. The transmissions are passed through Rayleigh
channels with maximum shifting 2σ2 = 500MHz. Besides, we
apply log-normal shadowing with the following parameters:
reference distance d0 = 1, path loss to the reference point
PL0 = 0, γ and Xσ are chosen arbitrarily from the sets of
values {2.6, 2.4, 0, 3}, {14.1, 9.6, 0, 7} respectively. These are
common values describing different obstacles and propagation
effects [26]. The distances between the transmitters and re-
ceivers are generated uniformly at random between 0 and 100.

For the sampling stage, we consider N = 256 spectral
bands and M = 15 analog channels, each sampling at fs =
24MHz and with Ns = 40 samples per channel. The overall
sampling rate of each receiver is thus 360MHz, which is a
little below 6% of the Nyquist rate and 3 times the Landau
rate. In all of the three algorithms, the sparsity is assumed
to be known. Union and BSOMP use a sparsity-based halting
criterion, whereas in BSIHT we fix the maximum iterations to
be 10. Each experiment is repeated over 200 realisations.

We show the influence of several practical parameters
on the performance of our recovery algorithms. In the first
experiment, we illustrate the impact of SNR on the detection
performance. Figure 1 shows the support recovery success rate
of the three algorithms for different values of SNR

Fig. 1. Influence of the SNR on the success rate.

In the second experiment, we vary the sensing time. We
consider the same sampling parameters as in the previous
experiment and set the SNR to be 10dB. Figure 2 shows the
support recovery success rate for different values of the number
of samples.

In the third experiment, we vary the number of receivers
Nrec. We consider the same parameters as above. Figure 3
shows the support recovery success rate for different values
of the number of receivers. The jumps that occur for the
union algorithm are due to the fact that in case of a tie, the
fusion center has to choose arbitrarily between support indices
with the same record. This considerably reduces the support
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Fig. 2. Influence of the number of samples on the success rate.

detection performance for certain values of the number of CRs
that favorise ties.

Fig. 3. Influence of the number of receivers on the success rate.

VI. CONCLUSION

We have presented two soft decision based collabora-
tive support recovery algorithms from sub-Nyquist samples:
BSOMP and BSIHT. We use a real sampling scheme and do
not assume that the CSI is known. We observe that BSOMP
and BSIHT outperform a hard decision union algorithm for
a large majority of parameters combination. Moreover, the
success rate of BSOMP is generally higher than this of BSIHT.
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